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ABSTRACT

An emulator is a software or hardware environment that is capable of closely reproducing the func-
tionalities of a real world system. Emulators, especially if implemented in software, are very useful for
performing experiments that might compromise the operation of the target system or simply when the
real system itself is not available. This is true in particular for computer networks, where configurations
of network devices often need to be tested before being deployed. In this paper we present a survey of
network emulation systems and we describe in detail Netkit, a lightweight emulator based on User-Mode
Linux. Besides being an effective instrument to support teaching of computer networks, Netkit has also
proven itself to be helpful in testing the configuration of large scale real world networks. Netkit provides
tools for a straightforward setup of complex network scenarios that can be easily distributed and comes
with a set of ready to use experiences that permit to immediately experiment with specific case studies.
Netkit also fully installs and runs in user space and provides users with a familiar environment consisting
of a Debian based Linux box and well known routing software and networking tools.
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1 Introduction

Testing configurations is a common need both for network administrators and for computer scientists
interested in networking. The first can take advantage of a testing phase for checking that a particular
configuration works as expected before deploying it, while the latter can exploit test results in order to
validate theoretical models with practical experimentation. Ideally, testing should take place under the
very same conditions in which the configuration is to be eventually deployed.

However, this often means injecting artificially generated, potentially harmful traffic into a live net-
work, which may cause damage to it. An effective alternative to live testing consists in implementing the
network configuration of interest inside a safe, isolated software environment which closely reproduces
the real target setting. Such environments are usually available in two flavours:

• Simulation environments allow the user to predict the outcome of running a set of network
devices on a complex network by using an internal model that is specific to the simulator. With
the network as an input and the outcome (possibly a network state) as an output, simulators do
not necessarily reproduce the same sequence of events that would take place in the real system, but
rather apply an internal set of transformation routines that brings the network to a final state that
is as close as possible to the one the real system would evolve to.

As this approach can be optimized in performance, the simulated network can typically scale well
in size. The drawback is that the simulated devices may have limited functionalities and their
behaviour may not closely resemble that of real world devices.

Some of the most representative network simulators are C-BGP [8, 10, 9], a routing solver that
computes the outcome of the decision process of the BGP protocol, NS-2 [89], a very comprehensive
object oriented network simulator, and SSFNet [95], which provides open source implementations
of several network protocols and network devices.

• Emulation environments aim at closely reproducing the features and behaviour of real world
devices. For this reason, they often consist of a software or hardware platform that allows to run
the same pieces of software that would be used on real devices. Differently from simulation systems,
in an emulator the network being tested undergoes the same packet exchanges and state changes
that would occur in real world.

Since emulation environments are the focus of this paper, examples of them are presented in the
following Sections.

The real advantage of the emulation approach comes out when the emulator itself is a software piece,
as this allows much higher flexibility in carrying out network tests. Since emulation makes use of real
routing software, every aspect of the network can be influenced and monitored like it could be in a real
network. While this ensures very high accuracy, the computational resources needed to run an emulated
device are typically higher than those available in the device itself. Hence, the performance of an emulated
device is, in general, lower than that of the real one, and this often poses limits on the scalability of the
size of the emulated network.

This paper introduces to the fundamental concepts of emulation environments and presents Netkit [11],
a lightweight product based on open source software that enables experimenting networking on a personal
computer. After describing the architecture and some internals of Netkit, we show how it is possible to
easily prepare and run complex network experiences, which can also be easily packaged and redistributed.
An example case study is also presented to show the capabilities of Netkit.

2 An Overview of Emulation Environments

An emulator is a software or hardware environment that aims at closely reproducing the features and
behaviour of a real device or system, usually making it possible to use software products unaltered inside
a system they were not designed for. A virtual machine is a running software that creates an abstraction
layer between a hardware/software platform and other software (possibly an operating system). Ap-
plications running inside a virtual machine interface with this abstraction layer instead of the physical
hardware. Therefore, a virtual machine may also implement virtual devices (disks, network interfaces,
etc.) that are different from those available on the platform the emulator runs on.
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Scale Emulation type Emulated device License Link

Bochs Small Full emulation IA-32 x86 GPL [75]
Cooperative Linux Medium Kernel port Linux box Free [76]
CrossOver Medium Compatibility layer Windows APIs Commercial [104]
DosBox Small Full emulation x86 DOS box GPL [78]
DosEMU Small Compatibility layer DOS box GPL [79]
Einar Large Router emulation Quagga based router GPL [80]
Emulab Large Testbed — Project based [74]
FAUmachine Medium User-mode kernel x86 box GPL [15]
IMUNES Medium Virtual image Linux box Free [18]
KVM Medium Native virtualization x86 box GPL [85]
MLN Medium Paravirtualization/User-mode kernel Linux box Free [86]
Modelnet Large Testbed Linux box GPL/BSD [16]
NCTUns Medium Simulation Host/Router Free [70]
Netkit Medium User-mode kernel Linux box GPL [11]
Parallels Medium Full virtualization x86 box Commercial [58]
PearPC Small Full emulation PowerPC box GPL [90]
Planetlab Large Overlay network — Membership [60]
Plex86 Medium User-mode kernel Linux box Free [92]
Q Small Full virtualization x86 box Free [93]
QEMU Small Full virtualization x86 box GPL [19]
SVISTA Small Full virtualization x86 box Commercial [96]
UML Medium User-mode kernel Linux box GPL [97]
UMLMON Medium User-mode kernel Linux box GPL [24]
vBET Medium User-mode kernel Linux box N/A [17]
VDE Large Overlay network — GPL [62]
VINI Large User-mode kernel Linux box Membership [100]
VirtualBox Small Full virtualization x86 box GPL/Commercial [28]
Virtual PC Small Full virtualization x86 box Free [54]
Virtuozzo Small Full virtualization x86 box Commercial [101]
VMware Small Full virtualization x86 box Commercial [102]
VNUML Medium User-mode kernel Linux box GPL [72]
Win4Lin Medium Full virtualization x86 box Commercial [103]
Wine Medium Compatibility layer Windows APIs GLPL [104]
Xen Medium Paravirtualization x86 box GPL/Commercial [55]

Table 1: A taxonomy of emulation-related products.

There are a lot of emulation products available, which can be distinguished on the basis of the
emulation technique adopted, of the type of device they emulate, and of the license with which they are
distributed. This Section attempts to provide a taxonomy of a number of emulators, with the twofold
purpose of outlining the landscape of available alternatives and of pointing out those products that are
more network oriented.

Table 1 shows a fairly comprehensive list of the existing emulation products. The proposed classifi-
cation coordinates have the following meaning:

• License specifies the license agreement under which the emulator is being distributed.

• The emulated device specifies the machine whose features are reproduced by the emulator. In
most cases it is a standard PC which, by running suitable pieces of software, can be turned to a
router, switch, or other network device.

• The scale ranges from small to large, and describes the number of virtual entities (hosts, routers,
switches, or whatever else) each emulator allows to start on the platform it is intended to be used
on (typically a standard workstation). A small scale emulator is usually conceived for running
very few instances of virtual machines, as their resource requirements may be rather high. A
large scale emulator is usually designed to run on a distributed architecture (possibly a cluster of
geographically distributed workstations connected by an overlay network), which allows to perform
arbitrarily wide-ranging experiments. Medium scale emulators typically allow to run around tens
of virtual machines on a single workstation.

• Emulation type specifies the technique used for virtualizing resources.
Full virtualization indicates that the emulated entity is a full-fledged system consisting of system
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buses, CPU, memory, disk, and other devices, and that optimization techniques are used to im-
prove the performance of the emulation. Among these techniques dynamic translation is often used,
which consists in translating blocks of binary code being executed in the emulated machine into
instructions for the real host, and in caching the translated pieces of code for future execution.
Full emulation adopts a complementary approach, in which every instruction of the emulated CPU
is implemented as an entire function or procedure in the emulator. While this ensures compatibility
and makes it easier to debug the code of the emulator, performance is severely impacted by this
technique, and a high-end workstation is usually needed to achieve nearly native speed emulation.
Native virtualization takes place whenever the emulator takes advantage of extensions available on
recent families of processors (Intel R©VT [29], AMD-VTM [3]), which allow a more effective distri-
bution of resources between the emulated machine and the host it runs on, thus achieving much
better performance.
In a paravirtualization environment each virtual entity is presented a special hardware abstraction
layer. Virtual machines must run slightly modified versions of the standard operating systems,
so that system calls are submitted to this abstraction layer (called hypervisor or virtual machine
monitor) instead of the host operating system.
Emulation environments using a virtual image are based on virtualization extensions to the FreeBSD
kernel [81] which allow to maintain multiple independent network stack instances within a single
operating system kernel.
Some products exploit a user-mode kernel, often called User-Mode Linux (UML) [97, 39, 38], which
is a slightly modified version of a standard Linux kernel that is compiled to run as a userspace
process. An instance of User-Mode Linux uses its own filesystem image and allocates a subset of
the memory available on the hosting machine. A UML kernel can start and schedule processes on
its own and has its own virtual memory manager as well as every other kernel subsystem. De-
vice drivers are suitably rewritten so that UML can provide some support for virtualized hardware
(disks, network interfaces, consoles). Differently from other emulation systems, User-Mode Linux
does not directly interface with the hardware but achieves virtualization based on the system calls
interface provided by the standard kernel.
A compatibility layer is not a real emulator, but rather a porting of a system call interface and a
set of libraries on a different platform. In this case there is no hardware being emulated. However,
programs that solely perform standard system calls and invoke library functions can run unmodified
because they are presented the same software interface as that of their native system.
Testbeds and overlay networks are large scale environments consisting of tens or hundreds of servers
that can be geographically distributed (in which case they are often connected so as to form an
overlay network). Such large scale architectures can be typically accessed by research institutions
to perform controlled experiments on a realistic setting.

Not all the products listed in Table 1 are tailored for performing networking experiments. Some of
them are general purpose, often small scale emulators that allow to run entire operating systems. We
are more interested in the environments that provide configuration capabilities and tools to ease building
and running emulated networks.

VDE and Xen are components that are often used in emulation environments. Virtual Distributed
Ethernet (VDE) [62, 64, 63] is a set of tools to create and manage a virtual network that can be spawned
over a set of arbitrarily distributed physical computers. VDE can be used to handle tunnels that separate
actual connectivity from the topology established by VDE virtual cables, thus providing with the ability
to transparently distribute local network experiences on different nodes. Xen [55, 27, 26, 25, 43, 59] is
a virtual machine monitor or hypervisor, that is, a software that provides an abstraction of hardware
resources. It consists of a kernel patch and some userspace tools. Because it directly interfaces with
hardware resources, using a Xen enabled kernel allows to run virtual machines (also called domains)
with very high performance levels. Operating systems cannot run unmodified inside Xen domains, as
the system calls they make must be mapped to software traps to the hypervisor. Yet, there are plans to
extend Xen to support virtualization technologies found on recent processors (Intel R©VT [29] and, in the
future, AMD-VTM [3]), which would provide with the ability to run unmodified software.

Einar [80] is a live CD router emulator based on the Xen hypervisor [55] and developed by a team of 5
students at the Stockholm KTH Royal Institute of Technology. It provides a wizard interface to quickly
set up and run experiences consisting of several switches, routers, and computers, possibly running
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some services. Each virtual machine is implemented as a Xen domain, and it possible to configure
bandwidth and delay limits on network interfaces. The traffic exchanged among the virtual machines can
be investigated by using the Ethereal network sniffer. As it runs from a live CD, the product requires no
installation.

Emulab, Modelnet, PlanetLab, and VINI share similar purposes and architecture. They all are large
scale testbeds which allow to run experiments involving a set of geographically distributed nodes. The
University of Utah makes available to researchers Emulab [74, 34, 34], a cluster of networked high-end
workstations that can be configured to run fully customizable tests. Faculty or senior staff members
coordinating an experiment have fine grained control on the software running on workstation nodes, from
the operating system to user level applications, and get exclusive administrator level access during the
time interval they are assigned. This allows to configure each node to act as an arbitrary network device.
Modelnet [16, 61, 33, 4] is a software emulator developed at the University of California, San Diego, that
allows to build distributed network experiences running on an Internet-like environment. PlanetLab [60,
2, 48, 47, 71] is an overlay testbed conceived to allow researchers to perform controlled experiments that
would benefit from running on geographically distributed nodes. The PlanetLab network consists of more
than 350 nodes at the time this paper is being written, and is managed by a consortium of academic,
industrial, and government institutions. Experiments are initiated on the basis of an Acceptable Use
Policy [91] that defines the rules for determining whether they are considered as appropriate. VINI [100, 6]
is a virtual network infrastructure running on about 15 PlanetLab nodes. It exploits User-Mode Linux [97]
to provide a realistic test environment while keeping the network conditions under control.

IMUNES [18] is a software emulator that takes advantage of an extension of the FreeBSD kernel
providing with the ability of running multiple independent network stack instances on a single operating
system kernel [53, 81]. A graphical topology editor allows to quickly prepare experiments consisting of
hubs, switches, routers, and hosts. Intermediate systems can arbitrarily use Quagga [94] or XORP [30] as
routing software. The product is available in the form of a live CD, which takes off the burden of having
to deploy a modified kernel on the host machine.

MLN [86] is a Perl script that can be used to quickly create a network consisting of Xen [55] and
User-Mode Linux [97] based virtual machines. By means of an ad-hoc language (MLN), it is possible
to specify the configuration of each device participating in the virtual network, including the emulation
type (Xen or UML), the filesystem being used, the amount of available memory, the startup commands
to be executed, and, of course, the topology of the network.

NCTUns [70, 65, 69, 66, 1, 67] is rather a simulator than an emulator. After defining a topology with
the integrated graphical editor, it is possible to launch traffic generators and sinks at a given time during
the simulation. The resulting traffic flows can then be investigated either by looking at sniffer traces or
by displaying an easy to read animation of the edges on the graphical topological map.

Netkit, UMLMON, and VNUML are all medium scale software emulators that utilize a User-Mode
Linux [97] kernel to run the emulated network experiences. Netkit is extensively described in the following
of this paper. UMLMON [24] is a solution for managing a set of User-Mode Linux virtual machines. It
comes in the form of a daemon written in Objective Caml and acts as a supervisor that allows to configure
and run UML instances by using a Remote Procedure Call interface. Interaction between the end user
and the daemon is possible by means of a command line or a web based interface. VNUML [72, 22, 21]
consists of an XML based language and an interpreter that can be used to describe and run an emulated
network of User-Mode Linux virtual machines. VNUML developers also propose an interesting set of
ready to use examples that implement some typical networking case studies.

3 The Architecture of Netkit

In the rest of this paper we describe in detail Netkit [11], a lightweight network emulator developed by
people at the Roma Tre University [99]. Netkit consists of two main components: a set of scripts and
tools that ease setting up complex network scenarios consisting of several virtual devices, and a set of
ready-to-use virtual experiences that can be used to analyze typical case studies. Netkit is conceived
for easy installation and usage and does not require administrative privileges for either one of these
operations.

As time goes on, old bugs are fixed and new features are introduced into Netkit. This paper refers to
the version of Netkit available at the time of writing, which is 2.4, filesystem F2.2, kernel K2.2 (User-Mode
Linux kernel 2.6.11.7).

6



NIC

NIC

RAM

Virtual hub
RAM

DISK

DISK

Figure 1: Resources of a Netkit virtual machine. Entities enclosed in the dashed box are virtualized,
while all the others correspond to devices or processes on the host machine.

The emulation approach adopted in Netkit is simple. Basically, every device that makes up a network
is implemented inside Netkit as a virtual machine. Each virtual machine owns a set of virtual resources
that are mapped to portions of the corresponding resources on the host. Figure 1 shows how this mapping
takes place. Virtual machines are equipped with a disk, whose raw image is a file in the host machine; they
have their own memory region, whose size can be established upon startup; and they can be configured
with an arbitrary number of virtual network interfaces which are connected to a virtual hub. The dashed
box in Figure 1 encloses virtualized resources, while everything outside of that box is a device or process
on the host. It is possible to observe that the virtual hub lives on the real host: indeed, it is a special
process that replicates packets on all the connected interfaces. If requested, the virtual hub can be
connected to a network interface of the host machine, so that a virtual machine can reach an external
network such as the Internet.

To make a clear distinction between an emulated device and the real machine it is running on, in the
following we label Netkit virtual machines and the software they run as guest, and we refer to the real
machine and the software it runs as host.

Netkit virtual machines can be networked by means of the virtual hub. In practice, a hub works
as a sort of cable that connects multiple guests. Notice that a guest must always connect to a virtual
hub, and cannot be directly connected to another guest. Figure 2 shows an example of how a typical
Netkit network looks like. VM1, VM2, and VM3 are virtual machines and they make up a simple topology
consisting of two collision domains: one including VM1 and VM2 and the other including VM2 and VM3. In
this topology VM2 can operate as a virtual switch that forwards traffic only on the ports connected to
the LAN segment containing the destination host. For this purpose, VM2 has been equipped with two
network interfaces.

The example in Figure 2 also introduces another principle of the Netkit emulation approach: the
functionalities of an emulated device depend on the software installed in the virtual machine that imple-
ments it. For instance, VM2 can be turned to a switch by running standard ethernet bridge administration
software such as brctl or to a router by properly setting up the IP routing tables.

Netkit virtual machines are based on the User-Mode Linux kernel [97], which is described in more
detail in Section 3.1. Starting a virtual machine means starting a UML instance, which often requires
dealing with somewhat complex command line arguments. For this reason Netkit supports straightfor-
ward configuration and management of virtual machines by means of an intuitive interface consisting of
several scripts.

Figure 3 synthetically describes the architecture of Netkit, consisting of the blocks inside the dashed
box. Each block represents a piece of software that runs on top of the ones beneath and is controlled
by the tools on its left. Virtual machines are UML instances that directly run on the host kernel and
are managed by a set of commands whose names are l-prefixed (ltools) and v-prefixed (vtools) utilities.
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Figure 2: Sample Netkit emulated network.

Virtual machines can run routing software, as well as other tools. Virtual hubs are implemented as
processes running on the host kernel.

Blocks with boldface text represent the only components that are presented to the end user. It is
possible to observe that there is no need for him to directly interact with UML kernels or virtual hubs.
On the other hand, both the ltools and the vtools are accessible to the user. The difference between
the two is that the ltools provide a higher level interface to virtual machines and therefore exploit the
vtools in order to implement their functionalities.

Because of its architecture, taking advantage of Netkit can be beneficial in several contexts. The
most common application is within didactics: as it gives students the feeling of what is actually going
on inside a network, Netkit has been successfully used to teach networking protocols within University
level degree courses. This is further supported by the fact that Netkit comes with a set of ready to
use network experiences that implement case studies spanning from routing protocols (TCP, RIP, BGP,
etc.) to application level services (DNS, e-mail, etc.) [12]. Another valuable application consists in
preparing virtual networks that act as sandboxes for safe debugging purposes: this spares the need to
perform potentially harmful tests on a live network. The ability to carry out experiments in a safe
environment, combined with the easiness of maintaining a one-to-one reproduction of a real network,
also comes handy for testing a configuration before deploying it. For example, Netkit has been used for
helping in determining the OSPF weights to be assigned within portions of the GARR Italian Academic
Research Network [82].

With respect to the other available network emulators, Netkit has the advantage of being lightweight
and easy to install and run. It is possible to launch a complex network experience consisting of 200
virtual machines in about 30 minutes on a typical workstation (Pentium IV 3.2GHz 2MB cache, 2GB
RAM)1. Netkit fully runs in userspace and has no dependencies on other software pieces. It natively
uses state of the art routing software [94, 44] and comes with most of the commonly used networking

1This test has been performed on a SKAS enabled host kernel. For more details about this, see Section 3.1
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Figure 3: Architecture of Netkit. Each software runs on top of the ones beneath and is controlled by the
tools on its left.

tools (sniffers, servers, etc.). Should it be needed, it is possible to also install additional packets inside
virtual machines. As detailed in Section 4, emulated network experiences can be easily redistributed in a
preconfigured, ready to use, and automatically starting up package without the need to carry any heavy
filesystem image.

On the other side, Netkit only works on top of Linux hosts and provides emulated Linux virtual
machines. While preliminary versions for the Windows OS are being released, and a live CD [68] is
also available to make it easier to play around with Netkit, the second restriction is inherent in Netkit
and cannot therefore be overcome. Also, at present Netkit provides a somewhat fixed implementation of
the link-level network layer which does not provide support for the emulation of physical link properties
(latency, packet loss, reordering, etc.) or the behaviour of wireless mobile stations. However, there are
plans to implement some of these features in future releases. Moreover, being an emulator, Netkit is not
suited for reproducing real time performance of network protocols and services.

There are a couple of projects that propose XML based languages for describing networks and can
therefore be exploited to describe and implement emulated scenarios. NetML [13, 31] is a project carried
on by the same group that maintains Netkit, and for this reason it is strongly integrated with it. Besides
an XML Schema, NetML consists of a set of tools that allow to turn a vendor independent description of a
network into configuration statements for specific routing software (Cisco, Juniper, Zebra) or, optionally,
a package implementing a Netkit network. NDL [73, 42, 41, 40] is a language based on the Resource
Description Framework (RDF) and a set of tools that ease producing network descriptions. While NetML
is conceived to describe small as well as broad networks, NDL is more suitable for large scenarios, as it
also takes into account the geographical location of network nodes. NDL tools also allow to automatically
sketch visual representations of a network.

3.1 User-Mode Linux: a Kernel in the Kernel

In an emulation environment virtual machines have nearly the same characteristics of a real host, including
their own kernel. Netkit exploits User-Mode Linux as kernel for the virtual machines. User-Mode Linux
is widely used by kernel hackers, who are doing filesystem and memory management development and
debugging, as well as by hardware developers, who are prototyping new types of device in software. It
also meets the interests of the security community, as it fits well the creation of jails and honeypots, and
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is often employed by the hosting industry to run virtual servers [49, 46]. The fundamentals of UML are
illustrated by its designer Jeff Dike in some publications [39, 35] which the following description is based
on.

User-Mode Linux [97, 39, 20, 45, 38, 7, 37, 36] is a port of the standard Linux kernel [84] which
is designed to run as a userspace process. Being a kernel in itself, UML comes with its own kernel
subsystems, including scheduler, memory manager, filesystem, network, and devices. In this sense an
instance of UML provides a virtualized environment in which everything (processes, memory, filesystem,
etc.) is controlled by itself instead of the host kernel. In practice, UML appears as a userspace process
on the hosting machine and acts as a kernel for its own processes.

Virtual machine settings can be passed to UML via a command line interface. While this is an
effective way of specifying configuration parameters, it is often the case that users interested in just
emulating networks are not willing to deal with complex kernel invocation commands. For this reason,
Netkit provides a higher level user interface to UML which is described in more detail in Section 3.4.

There is an important difference in the approach adopted by full emulation/virtualization products
and that adopted in Netkit. Full emulation products usually attain virtualization by directly interfacing
with the host hardware, and provide an abstraction layer implementing an architecture that may also
be different from the one of the host they are running on. In the case of UML, virtualization takes
place within the host kernel rather than at the hardware layer. In other words, UML provides simulated
hardware constructed on the basis of services provided by the host kernel. Essentially, UML is a port
of the Linux kernel to the Linux system call interface rather than to a specific hardware interface. User
space code simply runs natively (no emulation), while processes in kernel mode see a special environment
which limits access to host resources. This makes the emulation faster and more responsive, and is the
reason why Netkit is considered a lightweight emulator. The drawback of this approach is that it only
allows to run emulated Linux boxes.

Basically, what UML does is to provide virtualization for system calls. Normally, a process in the
virtual machine doing a system call is trapped directly into the host kernel. Instead, UML intercepts
system calls so that they are run in virtual kernel mode. This is implemented by using threads and the
ptrace system call. ptrace allows one process to control the execution of another, as well as change its
core image and be notified when it receives a signal. In UML a special thread called tracing thread makes
use of ptrace to intercept and dispatch to the virtual kernel the system calls issued by processes in the
virtual machine. Other traps caused by pieces of hardware (clock, I/O devices, etc.) are implemented in
UML by using signals.

For each process or thread running inside the UML virtual machine, the tracing thread creates a new
process on the host. Figure 4 shows a process listing on the host while tcpdump is running inside a virtual
machine. It can be easily seen that tcpdump appears as a process entry (pid 13868) on the host.

After performing preliminary initializations, UML mounts a virtual disk device provided by the user
and boots the Linux distribution it finds inside it. Virtual disks are managed by a User-mode Block
Device (UBD) driver, which uses a standard file (called backing file) on the host filesystem as storage
area. The backing file can be filled with Linux software in a way that is very similar to what would
happen on a real host. Indeed, the backing file can be made available as a loopback device on the host
machine by using the losetup command. Once done, it can be initialized by using mkfs and populated
by using tools such as debootstrap. In order to support hassle free usage, Netkit comes with a ready to
use filesystem containing most state of the art networking tools. For more details, see Section 3.3.

UML supports the emulation of an arbitrary number of network interfaces. This aspect is discussed
in more detail in Section 3.2.

Being a lightweight environment, it is possible to implement complex setups consisting of several
instances of UML based virtual machines. Since each virtual machine writes on its own filesystem, this
potentially implies using several backing files, which size is often not negligible (hundreds of megabytes).
However, the ubd block driver is able to support sharing of a filesystem among different virtual machines.
This is achieved by writing changes to the backing file into a different file, a technique that is also known
as Copy-On-Write (COW). Therefore, a typical setup of a complex emulated scenario consists of a single
large backing file containing a model filesystem and several small (typically less than 10 MB) COW
files that store the changes to the model filesystem. Thus, filesystem information for a virtual machine
can only be reconstructed based on both its own COW file and the backing file. Each COW file can
only be used together with the backing file it was created from. However, by using the UML utility
uml_moo [98, 57], it is also possible to merge the two and get a standalone backing file that contains all
the filesystem information for that virtual machine. COW files are implemented as sparse files. A sparse
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Host console
max@foo:~$ ps -o pid,command

PID COMMAND

12959 /bin/bash

12987 /bin/sh /usr/local/netkit/netkit2/bin/vstart pc1

12990 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(tracing thread)]

12991 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

12998 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13000 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13002 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13004 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13006 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13007 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13009 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13011 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13013 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13015 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13016 xterm -T Virtual Console #0 (pc1) -e port-helper -uml-socket

/tmp/xterm-pipexvvhYG

13018 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13021 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [/sbin/init]

13696 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [/sbin/klogd]

13792 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [/sbin/syslogd]

13834 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [-bash]

13836 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [-bash]

13868 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [tcpdump]

13895 ps -o pid,command

Figure 4: Processes and threads in a UML virtual machine are implemented as processes on the host.
Host console

max@foo:~$ ls -ls --block-size=1 pc1.disk

634880 -rw-r--r-- 1 max max 630358016 2007-01-19 18:24 pc1.disk

max@foo:~$ du --block-size=1 pc1.disk

634880 pc1.disk

Figure 5: Size and actual disk space consumption of sparse files. |pc1.disk— takes about 620 KB of disk
space, but is apparently as large as 602 MB.

file is one which efficiently uses the filesystem by allocating space only when data is actually written
to the file. Figure 5 shows an example of the space allocation strategy for a sparse file. Apparently,
the size of pc1.disk is 602 MB (output of ls), but the actual disk space consumption for this file is of
620 KB (first column of the output of ls and output of du). This means that pc1.disk has a lot of
contiguous empty regions which are not actually written to disk: this is often the case for COW files, as
the filesystem of an only just started virtual machine only slightly strays from the initial status.

Once a UML virtual machine has started, it is possible to interact with it by means of a terminal
interface. The interface can be attached to arbitrary file descriptors, pty pseudo terminal devices, or to
a user space application like xterm or a server like telnetd. This is possible thanks to the port-helper
tool, that is part of the UML utilities [98, 57]. Essentially, port-helper uses a UNIX socket to pass to the
UML kernel a file descriptor obtained from an application (like xterm) and used to perform input/output.
This allows UML to directly interface with the application.

UML instances can be managed from the host machine by means of the uml_mconsole utility [98, 57],
which allows to halt or reboot a virtual machine, to send it magic SysRq sequences, to configure emulated
devices on the fly, and to pause or continue its execution. uml_mconsole is used in the Netkit scripts to
manage running virtual machines.

In the past UML used to be available in the form of a patch to a standard Linux kernel [97, 84]. Most
recent kernels already include user-mode code, thus a UML kernel can be simply built by specifying um as
target architecture while compiling a vanilla kernel. Starting from 2002, Paolo Giarrusso [56] maintains
a set of patches called SKAS that can be optionally applied to the host kernel to change the way UML
behaves. The patches have beneficial effects in terms of both security and performance. Essentially, when
using the standard technique with tracing thread, the address space of each virtual machine contains the
image of the UML kernel, and can have write access to it. Since UML runs on the host, this also means
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Figure 6: Relationships between User-Mode Linux and the other components of the host system. Boxes
represent kernel entities (subsystems, interfaces, or processes). Dashed boxes represent virtualized re-
sources, while gray filled ones are instantiations of kernel entities (processes or files).

gaining access to the host machine, which affects security. On the other hand, UML takes advantage of
signals in order to implement system call dispatching, and this affects performance. A SKAS (Separate
Kernel Address Space) enabled host kernel allows to overcome both these issues. As for security, SKAS
makes UML run in a different address space from the processes it controls. In turn, this limits the
number of signals to deliver, as fewer context switches are needed within this rearranged setting, and
this improves performance. Benchmarks have shown that starting 100 virtual machines with the default
configuration (8 MB, minimal services running) on a Pentium IV 3.2GHz with 2MB of cache and 2GB
of RAM takes about 30 minutes with a plain 2.6.16.16 host kernel. The time required to start the same
set of virtual machines on the same workstation running a 2.6.16.16 SKAS enabled kernel dramatically
reduces to about 10 minutes, and starting 100 more virtual machines in this setting takes less than 30
more minutes, thus having a scenario consisting of 200 devices running on a single workstation within
less than 40 minutes.2 Even though the SKAS patch improves security and boosts performance, Netkit
still scales rather well without the need to replace the host kernel.

Figure 6 shows the relationships between the user-mode kernel and the other components of the host
system. Boxes represent kernel entities (subsystems, interfaces, or processes). Dashed boxes represent
virtualized resources, while gray filled ones are instantiations of kernel entities (processes or files). A
virtual machine is a set of processes on the host. The virtual machine kernel has its own subsystems
that are independent from those of the host kernel. The virtual machine filesystem is implemented in
terms of files on the host. Other processes running on the host provide a user interface to the virtual
machine (xterm) or are used for its management (uml_mconsole). The uml_switch is a user space utility
to support networking whose functionalities are explained in Section 3.2.

3.2 Networking Support in Netkit

Communication between different virtual machines is made possible in Netkit by emulated networking.
Figure 7 describes graphically how this emulation takes place.

UML allows to configure virtual machines with an arbitrary number of network interfaces. By using
appropriate UML command line arguments, these interfaces can be attached to a uml_switch process [98,
57] running on the host, which simulates the behaviour of a network switch or hub. In this way, different
virtual machines attached to the same switch can exchange data with each other.

More specifically, UML virtual network interfaces can be attached to a UNIX socket. In turn, a
uml_switch can be attached to the same socket and forward packets among the virtual machines that

2In order not to overload the host with several virtual machines booting up at the same time, Netkit adopts an optimiza-
tion technique that ensures that no more than a fixed number of virtual machines are booting simultaneously at any given
time. For the case of these performance tests the number has been always set to 3. For more details about this feature, see
Section 3.4.
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Figure 7: This diagram shows how Netkit virtual machines are networked, possibly with a connection to
an external network.

are connected to that socket. Netkit scripts take care of automatically starting uml_switch processes
according to user’s needs.

From the point of view of the network stack, Netkit provides implementations of the ISO-OSI layers
as described in Figure 8.

• The physical layer is implemented by a set if uml_switch processes running on the host. They are
configured to behave as hubs, and packets are forwarded to interfaces of other virtual machines
by using UNIX sockets. For this reason, in this paper we also refer to the uml_switch as virtual
hub. At present this mechanism does not provide support for simulating delay, packet loss, and
reordering.

• The data link layer supports the Ethernet protocol, but collisions cannot happen because the
uml_switch avoids them. Unless differently specified, emulated network interfaces are assigned an
automatically generated MAC address.

• The network layer supports both IPv4 and IPv6 by means of kernel code and user space utilities.

• What happens on upper layers is up to the specific software being run inside virtual machines. For
example, running a web server would introduce support to HTTP.

Notice that layers from data-link through transport are (at least partly) implemented inside the UML
kernel. Therefore, changing the kernel results in making new implementations and features available.

The configuration of network interfaces in Netkit is straightforward thanks to the existence of scripts
set up for the purpose. In order to slightly abstract from the technicalities of how networking is imple-
mented, Netkit presents uml_switches as virtual collision domains. Each virtual network interface must
be attached to a collision domain that is identified by an arbitrary name. Therefore, connecting virtual
machines is simply a matter of attaching their interfaces on the same collision domain.

For example, the following command line starts up a virtual machine named foo with a single network
interface attached to collision domain COLL-DOM-A.

vstart foo --eth0=COLL-DOM-A
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Figure 8: The emulated network stack in Netkit.

IP addresses for the interfaces can then be configured in the usual way by using ifconfig inside
virtual machines.

Configuring a virtual machine to reach an external network requires setting up a TAP device. TUN/TAP
is a device driver inside the Linux kernel that sets up a special network interface connected to a user
space application instead of a physical medium. Packets sent to a TUN/TAP interface are written to the
underlying application, while information generated by the application appears as it were received from
the interface. The only difference between TUN and TAP is that the former expects the application to
handle IP packets, while the latter allows to directly transfer Ethernet frames.

As shown in Figure 7, the setup for an external connection involves configuring a TAP device on the
host and using an uml_switch as application that sends and receives data from it. Since the uml_switch
can still be attached to virtual machines via UNIX sockets, this allows to connect a virtual network
segment to a real network one. Depending on the specific configuration set up on the host, the two
segments can be bridged or routed. In order to prevent IP addresses used for experiments from leaking
on a real network, Netkit enables routing instead of bridging, and uses Masquerading to hide addresses
assigned to emulated network interfaces. Masquerading is a variant of port-based NAT in which outgoing
packets are mangled to appear as originated from the interface they are sent through; incoming response
packets are forwarded to the interface that had actually initiated the network transfer. Masquerading can
be enabled in Linux by taking advantage of the netfilter framework [87] inside the kernel. This can be
achieved by using iptables to configure an appropriate rule with target MASQUERADE in the POSTROUTING
chain of the nat table.

Netkit scripts take care of automatically setting interfaces connected to an external network, so that
configuring them is as easy as configuring standard interfaces. The following is a command line that
configures virtual machine foo to have a TAP (LAN or Internet connected) interface:

vstart foo --eth0=tap,10.0.0.1,10.0.0.2

The two IP addresses are automatically assigned to the TAP interface on the host and to the emulated
interface inside the guest, respectively. These addresses are also used to set a proper routing table inside
the guest. Both addresses must be provided so that, once the virtual machine has started up, it is already
able to reach the external network. Notice that the configuration of a TAP interface requires administrative
privileges, therefore Netkit will ask for the root password when the above command is executed.

3.3 A Filesystem of Networking Tools

Netkit is meant to be an environment that makes it easy and quick to set up complex network experiences.
For this reason, virtual machines are equipped with a filesystem that contains most well known servers
and tools for network analysis.

The Netkit filesystem contains a full-fledged Debian GNU/Linux distribution [77] which has been
suitably tuned to run inside UML. This provides users with a familiar environment and allows to quickly
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grab new software pieces that might be needed for specific experimentation purposes, or to flexibly
upgrade currently installed tools. Actually, installing or upgrading software pieces is simply a matter
of starting a virtual machine that is connected to the Internet (see Section 3.2) and running the apt
tools [14].

Among the network services available in Netkit there are the apache web server, the bind Domain
Name Server, a DHCP server, the exim4 Mail Transport Agent, an FTP server, the netfilter configuration
tool iptables, an NFS server, and a Samba server. Utilities include traceroute, ping, arping, netcat,
tcpdump. For a complete list of installed packages, see [88].

Netkit makes use of the Copy-On-Write technique described in Section 3.1 to save disk space when
multiple virtual machines are run. In this way there is only one shared backing file containing the model
filesystem downloaded with Netkit, and each virtual machine stores changes to that filesystem inside its
own COW file. In this way, not only the filesystem is shared among all the virtual machines, so that they
see completely aligned tools and services, but it is also possible to easily revert to the original filesystem
contents by simply deleting a COW file in case things mess up. There is also an option of the Netkit
commands that allows to write changes to the model filesystem permanently, which comes handy for
example when installing new packages which are supposed to be available inside all virtual machines.

In order to facilitate the transfer of files between the host and a virtual machine, the special directory
/hosthome inside a virtual machine makes the user’s home directory on the host always accessible. The
same technique of providing special directories pointing to the host filesystem is also used by Netkit to
automatically transfer settings for preconfigured network experiences. For more details about this, see
Section 4.

3.3.1 The Zebra Routing Software Suite

A special mention is due to the routing software installed in the Netkit filesystem. In order to experiment
with routing protocols, Netkit comes with an installed release of the Zebra routing software [44]. Zebra
is a suite of daemons that provide support for several routing protocols, including RIP [23], OSPF [32],
and BGP [105]. Routing protocols take care of spreading information about available destinations on a
network in order to automatically update the routing tables of each device.

Figure 9 describes an abstraction of the architecture of Zebra and of the way in which it injects
information in the kernel routing table. Each Zebra routing daemon manages a specific routing protocol,
has its own configuration file, and writes to its own log. They listen on different TCP ports, so that
messages of a particular routing protocol can be sent to the appropriate daemon. For each routing
protocol, a Routing Information Base (RIB) and a Forwarding Information Base (FIB) are maintained.
The RIB is the set of all destinations known to that protocol, together with the path to reach them
and some additional reachability information. The FIB contains, for each possible destination on the
network, only the alternative that is considered the best one to reach it. Zebra in itself is a routing
daemon: it receives information from the FIBs of the other daemons and, for each destination, selects
the best alternative among those made available by different routing protocols. Zebra’s best routes are
finally injected into the routing table of the kernel, which is used to actually forward packets.

All the routing daemons, including Zebra, can be contacted via telnet on a dedicated TCP port to
check the status of routing protocols and perform “on the fly” configuration. The daemons provide a
command line interface which closely resembles that of Cisco routers. Most of the commands available on
real devices can be used, but each daemon only provides those commands that are specifically oriented
to the routing protocol it manages. For example, ripd does not provide the show ip bgp command, and
bgpd must be contacted in order to be able to issue it. However, the Zebra suite also comes with vtysh,
an integrated shell that provides a unique interface to all the daemons. Figure 10 shows a sample session
of usage of the bgpd prompt inside a virtual machine.

Unfortunately, Zebra development is somewhat slow. For this reason, and also in order to create a
community that does not rely on a centralized model, the Quagga project has been started [94]. Quagga
is essentially a fork of Zebra in which proposals from a community of users are usually discussed and
more quickly acknowledged. As a result, Quagga provides bug fixes and functionalities that are missing in
Zebra, sometimes at the expense of stability (both stable and unstable releases of Quagga are available).
At present, Netkit does not provide the Quagga routing suite. However, it can be easily installed in case
it is needed, and there are plans to include it in future releases.

An alternative routing software suite is XORP [30, 51, 52, 50], an extensible routing platform that
overcomes some of the limitations of Zebra/Quagga. XORP leverages on a framework from abstracting
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Figure 9: An abstraction of the architecture of the Zebra routing software.

and decoupling routing policies from protocols [5]. This allows a greater degree of flexibility than in
products like Zebra/Quagga, where policy constructions are hardwired: for example, there is no way
to express a matching condition like metric < 3 in Zebra/Quagga. Another difference is that the Ze-
bra/Quagga interface supports Cisco IOS-like commands, while XORP’s interface is quite similar to that
of Juniper JunOS platforms. XORP intends to be an attractive alternative both for researchers and for
hardware vendors, as stability for mission-critical production use is one of the main goals of the project.
The current version of the Netkit filesystem does not include XORP. Yet, it can be installed in case it is
needed.

3.4 User Interface

One of the most interesting features of Netkit is the user interface, which includes tools for quickly
and easily setting up complex and redistributable network experiences. Netkit virtual machines can be
managed by means of a set of commands consisting of v-prefixed (ltools) and l-prefixed (vtools). All
these commands must be run on the host machine and are implemented as shell scripts.

vtools are conceived to configure and manage single virtual machines, and they provide the following
functionalities:

vstart can be used to configure and start a new virtual machine, identified by an arbitrary name. It
allows to set parameters such as the amount of available memory, the kernel and filesystem to
be used, the type of terminal device to make available, as well as the network interfaces and the
collision domains they are attached to. Netkit’s default settings usually fit most of the needs, so
that starting a virtual network device often simply consists in specifying the network interfaces it
should be equipped with.
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Virtual machine console
router:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to router.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> enable

bgpd# configure terminal

bgpd(config)# router bgp 1

bgpd(config-router)# network 10.0.0.0/8

bgpd(config-router)# neighbor 192.168.0.1 remote-as 2

bgpd(config-router)# end

bgpd# disable

bgpd> show ip bgp

BGP table version is 0, local router ID is 0.0.0.0

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*> 10.0.0.0 0.0.0.0 0 32768 i

Total number of prefixes 1

bgpd> exit

Figure 10: Session of usage of the bgpd daemon. Available commands closely resemble those of Cisco
routers.

For example, the following command starts a new virtual machine named pc1, with no network
interfaces.

vstart pc1

If Netkit is properly installed, the above command prints some informative messages on the host
terminal and boots pc1 inside a new terminal window. Figure 11 shows the booting phase of pc1.
It is possible to notice that boot time messages are exactly those that would be observed on a
standard Debian system, and that at the end the user is presented a shell prompt as root in the
virtual machine.

The following commands start two virtual machines, pc2 and pc3, with two network interfaces
each. Notice that pc2’s eth0 and pc3’s eth0 are attached to the same collision domain COLL-DOM-A,
therefore the two virtual machines will be able to communicate with each other.

vstart pc2 --eth0=COLL-DOM-A --eth1=COLL-DOM-B
vstart pc3 --eth0=COLL-DOM-A --eth1=COLL-DOM-C

Once they have finished booting, pc2 and pc3’s network interfaces can be configured by using
ifconfig as shown in Figure 12, so that the two machines can reach each other. Also notice
that informational messages on the host terminal show that the necessary uml_switches have
automatically been started without any need for user intervention.

vconfig can be used to attach a network interface “on the fly” to a running virtual machine. This is
useful to alter the configuration of an already running scenario or just to avoid having to reboot
some machine because one of its interfaces has been forgotten.

The syntax of this command is analogous to that of vstart, so that the following command adds
to pc2 an interface eth2 attached to collision domain COLL-DOM-D:
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Figure 11: A Netkit virtual machine starting up. The window with black background is a terminal on
the host, while the other one is the virtual machine terminal.

Figure 12: A simple Netkit experiment consisting of two directly connected virtual machines.
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vconfig pc2 --eth2=COLL-DOM-D

vlist is a command that provides information about currently running virtual machines. If invoked
with no arguments, it produces a list of virtual machines, including the user that has started them,
the PID of the tracing thread, the amount of consumed memory, and the list of network interfaces
with the collision domains they are attached to (see, e.g., Figure 13). If a virtual machine name is
provided as argument, vlist provides detailed information about it, as shown in Figure 14.

vhalt is exactly the equivalent of running halt inside a virtual machine. It gracefully stops the machine
by running its shutdown scripts, properly unmounting the filesystem and stopping it. vhalt is
provided on the host as a convenient tool for performing the shutdown of multiple virtual machines
within a script. Figure 15 shows the usage of vhalt for stopping pc3.

vcrash provides a method to immediately stop a running virtual machine. Actually, using vcrash is
equivalent to abruptly unplugging the virtual machine power cord. This is achieved by first asking
the UML kernel to stop itself through a special UNIX management socket. The UML utility [57, 98]
uml_mconsole is used for the purpose. In case this attempt fails, for example because UML is
somewhy frozen, the virtual machine processes are automatically killed by vcrash. Upon the
subsequent boot, a crashed virtual machine will run a filesystem check to recover inconsistencies.
This can be avoided, and the filesystem can be reverted to the original contents, by simply removing
the COW file.

vcrash is often used in networking experiments consisting of several machines, as it is much faster
than vhalt.

vclean is the Netkit “panic button”. Should things mess up, some virtual machine be stuck, or tunnel
configurations be left on the host, vclean helps in getting rid of all this with a single command.
vclean can be invoked to perform several operations: it can simply remove unused uml_switches,
kill all running virtual machines owned by a specific user, and remove tunnels connecting to an
external network. Figure 16 shows the usage of vclean to kill unused virtual hubs.

vclean also comes handy when used in combination with vconfig. In fact, due to the mechanism
by which they are configured, network interfaces attached by vconfig do not show up in the output
of vlist nor the uml_switches they are attached to can be automatically killed when the virtual
machine stops: vclean must be used for the purpose.

vtools can be profitably used for configuring, starting, and managing few virtual machines. In
principle, if used within a suitably written shell script, they could also be exploited to automatically start
several virtual machines by invoking a single command. However, the setup of a complex experience
usually involves lots of configurations not just of the emulated hardware but also of the services that
should be available on the emulated network. Also, it may be difficult to translate the network topology
in terms of vstart command line options. For this reason, Netkit provides higher level ltools which
allow to easily set up, launch, or shutdown a complex scenario in a straightforward way. The l in ltools
stands for “laboratory” (in the following abbreviated as “lab”), which is the name that is often associated
to preconfigured redistributable Netkit scenarios. ltools rely on functionalities provided by vtools and
offer the following interface:

lstart is the command that is used to start virtual machines that make up a lab. Actually, starting all
of them is as simple as issuing lstart alone in a shell on the host. Details about how to prepare
a self running scenario are provided in Section 4. Optionally, lstart can be used to start only a
subset of the virtual machines that are part of the lab.

ltest supports the creation of redistributable self testing labs. Basically, the principle behind ltest
is that each virtual machine is automatically instructed to perform a set of hardwired and user
defined dumps of the significant information that contributes to define its status. For example, the
dumps can include the contents of a routing table or the results of a ping. These dumps can then
be collected and saved as a signature of a correctly running emulated network. Once the lab is
moved to a different host, checking that it is still properly running is simply a matter of running it
in test mode and verifying that the obtained dumps match the signature.
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Host console
max@foo:~$ vlist

USER VHOST PID SIZE INTERFACES

max pc2 920 13140 eth0 @ COLL-DOM-A,

eth1 @ COLL-DOM-B

max pc3 1124 12380 eth0 @ COLL-DOM-A,

eth1 @ COLL-DOM-C

Total virtual machines: 2 (you), 2 (all users).

Total consumed memory: 25520 KB (you), 25520 KB (all users).

Figure 13: Sample output of vlist. The command shows that there are two virtual machines running
and reports their owner, the PID of the tracing thread, the amount of consumed memory, and a list of
network interfaces, together with the collision domains they are attached to.

Host console
max@foo:~$ vlist pc3

============= Information for virtual machine "pc3" =============

--- Accounting information ---

PID: 1124

Owner: max

Used mem: 12380 KB

--- Emulation parameters ---

Kernel: /home/max/netkit2/kernel/netkit-kernel

Modules: /home/max/netkit2/kernel/modules

Memory: 8 MB

Model fs: /home/max/netkit2/fs/netkit-fs

Filesystem: /home/max/pc3.disk

Interfaces: eth0 @ COLL-DOM-A (/home/max/.netkit/hubs/

vhub_max_COLL-DOM-A.cnct)

eth1 @ COLL-DOM-C (/home/max/.netkit/hubs/

vhub_max_COLL-DOM-C.cnct)

Hostfs at: /home/max

Console 1: terminal emulator

Console 2: disabled

Other args: umid=pc3 root=98:1 uml_dir=/home/max/.netkit/mconsole quiet

Mconsole: /home/max/.netkit/mconsole/pc3/mconsole

Figure 14: Usage of vlist to get detailed information about a running virtual machine.

Figure 15: Shutdown of a virtual machine by using vhalt.
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Host console
max@foo:~$ vclean

Killing unusued virtual hubs owned by user max:

/home/max/.netkit/hubs/vhub_max_COLL-DOM-D.cnct (PID 4168): Killing... done.

Figure 16: Usage of vclean to kill unused virtual hubs.
Host console

max@foo:~/netkit-lab_bgp-6-multi-homed-stub$ linfo

====================== Lab information ==========================

Lab directory: /home/max/netkit-lab_bgp-6-multi-homed-stub

Version: 1.0

Author: The Netkit Team

Email: netkit.users@list.dia.uniroma3.it

Web: <unknown>

Description:

<unknown>

The lab is made up of 4 virtual machines ( as100r1 as200r1 as20r1 as20r2).

=================================================================

Figure 17: Sample usage of linfo to get basic information about a Netkit lab.

lhalt and lcrash behave like their counterparts vhalt and vcrash, but they automatically perform
the shutdown or crash operation on all the virtual machines that make up a lab. Optionally, lhalt
and lcrash can affect only a subset of the machines of the lab, for example in case some of them
need to be rebooted without having to restart the whole lab.

linfo can be used to get basic information about a lab, including descriptive data and a list of the
virtual machines that make it up. Figure 17 shows an example of its usage. linfo can also be used
to get a sketch of the data-link topology of a lab, including hosts, interfaces, and collision domains.
This feature requires the Graphviz [83] graph drawing library to be correctly installed. Figure 18
shows an example of topology generated by linfo. Ellipses represent hosts and are surrounded by
integer values indicating network interfaces. Diamonds represent collision domains (virtual hubs).

lclean just performs a cleanup of temporary files left over after running a lab (COW files, logs, etc.).
It has nothing to do with its counterpart vclean, which instead performs cleanup on running
processes.

Both the vtools and the ltools, as well as the other Netkit components, are fully documented by
means of man pages that are available with the Netkit distribution.

4 Setting up a Virtual Lab

It has already been pointed out in this paper that setting up an emulated network experiment involves
dealing with lots of configuration files and a potentially complex topology. Netkit provides tools to
facilitate this task and to support the creation of easily redistributable network scenarios that can be
launched with a single command. This Section describes how to prepare such a scenario and manage it
with Netkit’s ltools.

A Netkit lab is a set of fully preconfigured virtual machines that can be started or stopped together.
Netkit comes with a set of ready to use labs implementing interesting network scenarios involving bridging,
transport level congestion control algorithms, routing protocols (with special attention to BGP), and
application level services (DNS, E-mail). The labs can be downloaded from [12]. Further labs are
periodically added.

Figure 19 summarizes the components of a Netkit lab. Actually, a lab consists of a hierarchy of files
and directories having special roles. The following Sections describe these roles in detail and explain how
to create a custom Netkit lab.
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Figure 18: A sketch of the data-link layer topology generated by linfo. Ellipses represent hosts; diamonds
represent collision domains (virtual hubs); integers around ellipses indicate network interfaces.

4.1 Defining the Topology

Before starting to configure a lab, it is strongly advised to prepare a detailed map of the topology
that is about to be implemented. We propose an effective formalism to do this, which is also used
in the documentation and examples supplied with Netkit. Figure 20 shows an example of usage of this
formalism. As explained in the legend, router symbols represent emulated devices; they do not necessarily
have to be routers but, since most of the labs are likely to deal with routing issues, they are represented
as such. Circled letters represent collision domains; the letter serves as identifier for the collision domain,
and will be used by Netkit to associate a virtual hub to it. Each collision domain is linked to a square box
containing the address of the corresponding subnet. Boxes surrounding devices detail information about
their network interfaces: the lower half contains the name of the interface and the upper half specifies
the last byte of its IP address on the subnet it is attached to. A thick line represents a local network.

In the following we use the topology in Figure 20 as a reference for implementing a sample Netkit lab.
Collision domains B and C represent stub LAN segments.

4.2 Implementing the Topology

The topology of a network can be specified in Netkit in two steps.
First, Netkit needs to know the virtual machines that make up the lab. Each directory in a lab

represents a virtual machine named as the directory itself. The sole existence of a directory tells Netkit
to start a virtual machine with that name. Figure 21 shows an example of lab consisting of two virtual
machines, router1 and router2, which is also confirmed by linfo.

Second, the link-level topology of the lab must be defined. The file lab.conf contains the description
of the topology of the lab in terms of connections between different virtual machines. An example of
lab.conf file is shown in Figure 22. The first part of the file contains optional descriptive information
about the lab, which may be useful when the lab is redistributed to other people. The rest of the file
contains a mapping between network interfaces and collision domains. For example, the line:

router1[0]=A

means that interface eth0 of router1 is attached to collision domain A.
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Directories: each directory specifies the existence of a virtual machine named as the directory itself;
files contained in a directory vm are automatically copied to the root (/) of vm’s filesystem; files
contained in the shared directory are copied to the root (/) of every virtual machine.

lab.conf: a file describing the link-level topology and other configuration parameters for virtual ma-
chines (amount of memory, etc.).

Startup and shutdown scripts: they can be used to apply some settings (e.g., configure IP ad-
dresses, start services) during the boot phase; they can be shared or specific to each virtual
machine.

test: a directory that contains scripts for dumping the status of virtual machines and that accommo-
dates the dumps themselves.

lab.dep: a file describing dependencies in the boot order of virtual machines.

Figure 19: Summary of the components of a Netkit lab.
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Figure 20: A possible formalism for describing the link-level topology of a lab.

Host console
max@foo:~/sample_lab$ ls -l

total 8

drwxr-xr-x 2 max max 4096 2007-01-20 15:49 router1

drwxr-xr-x 2 max max 4096 2007-01-20 15:49 router2

max@foo:~/sample_lab$ linfo

====================== Lab information ==========================

Lab directory: /home/max/sample_lab

Version: <unknown>

Author: <unknown>

Email: <unknown>

Web: <unknown>

Description:

<unknown>

The lab is made up of 2 virtual machines ( router1 router2).

=================================================================

Figure 21: Sample Netkit lab made up of two virtual machines.
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LAB_DESCRIPTION="Sample lab for testing purposes"

LAB_VERSION="0.1"

LAB_AUTHOR="Massimo Rimondini"

LAB_EMAIL="contact@netkit.org"

LAB_WEB="http://www.netkit.org/"

router1[0]=A

router1[1]=B

router2[0]=A

router2[1]=C

Figure 22: A sample lab.conf file.

ifconfig eth0 30.0.0.1 netmask 255.255.255.252 up

ifconfig eth1 10.0.0.1 netmask 255.0.0.0 up

/etc/init.d/zebra start

Figure 23: A startup file for router1 (router1.startup).

Optionally, other configuration parameters can be put inside lab.conf. For example, the amount of
memory for a virtual machine can be increased to accommodate larger routing tables with a line similar
to the following:

router[mem]=128

Basically, any valid option to vstart can be used between square brackets and assigned a value.

4.3 Setting Network Addresses and Startup Time Services

Virtual machines can be instructed to run specific commands on startup and shutdown. During the
startup phase, each virtual machine vm runs the scripts shared.startup and vm.startup. These scripts
must therefore contain commands that are available in the virtual machine filesystem. Apart from this
restriction, almost anything can be put in the startup files. In practice they are generally used to set IP
addresses for network interfaces and to start network services. Hence, a typical startup file often looks
like the one in Figure 23, which tells router1 to self configure IP addresses for its network interfaces and
to enable the Zebra routing daemon. It comes straightforward that router2.startup will look much
similar.

In the same way, virtual machines can run user defined shutdown scripts. Upon halting, a virtual
machine vm first runs vm.shutdown and then shared.shutdown. Shutdown scripts are only executed if
the lab is gracefully stopped with lhalt.

4.4 Configuring Services

After specifying which services should be started at boot time, configuration files for them must also
be provided. In Netkit this is made possible by a mechanism that automatically makes some of the files
that are part of the lab available inside a virtual machine.

In particular, upon starting up a virtual machine Netkit copies all the files inside the directory
associated with that machine inside its filesystem. For example, if vm is a virtual machine, all the files
inside directory vm/ on the host are copied to the root directory (/) of vm’s filesystem during its boot
phase. If several machines need to access the same files, these can be placed in a directory named
shared: everything inside shared is copied to the root (/) of any virtual machine upon its startup.
Netkit recognizes shared to be a special directory and does not start a virtual machine for it.

This approach of mirroring files from the host has a twofold advantage. It does not add any overhead
to the configuration, because the only files to be prepared are those that will be actually fetched by
the servers. Moreover, in this way there is no restriction on the number or type of services that can be
configured.
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Host console
max@foo:~/sample_lab$ tree -n

.

|-- lab.conf

|-- router1

| \-- etc

| \-- zebra

| |-- daemons

| \-- ospfd.conf

|-- router1.startup

|-- router2

| \-- etc

| \-- zebra

| |-- daemons

| \-- ospfd.conf

\-- router2.startup

Figure 24: A possible hierarchy of directories for a lab. Configuration files are placed inside router1 and
router2. All the files inside these two directories are copied inside the homonymous virtual machines
upon their startup.

# This file tells the zebra package

# which daemons to start.

# Entries are in the format: <daemon>=(yes|no|priority)

# where ’yes’ is equivalent to infinitely low priority, and

# lower numbers mean higher priority. Read

# /usr/doc/zebra/README.Debian for details.

# Daemons are: bgpd zebra ospfd ospf6d ripd ripngd

zebra=yes

bgpd=no

ospfd=yes

ospf6d=no

ripd=no

ripngd=no

Figure 25: A sample daemons file, telling Zebra which routing daemons to start.

In the case of our example, we may have a hierarchy of files like the one in Figure 24. It is possible to
notice that we have provided two configuration files for each router. daemons, shown in Figure 25, tells
Zebra which routing daemons should be activated. ospfd.conf, shown in Figure 26, enables basic OSPF
routing in order to make the internal LAN of router1 reachable from router2 and vice versa. Due to
the symmetrical nature of the example, the two files daemons and ospfd.conf are identical on the two
routers.

This configuration pattern is common when the Zebra routing daemon is being used: routing protocols
to be supported are listed inside etc/zebra/daemons, while protocol specific configurations go inside
etc/zebra/daemon name.conf files.

4.5 Tuning Lab Startup

Once the lab has been prepared, it is possible to alter some other settings that affect the way in which
it will be started. By default, Netkit starts the virtual machines of a lab one after the other, and waits
for the previous one to end the boot phase before starting the next one. This is done in order to prevent
overloading of the host machine. An option of lstart allows to disable this precautionary measure and
to start multiple virtual machines at the same time. A variant of the same option also allows to ensure
that at every time instant no more than a fixed number of virtual machines is booting: this is a good
compromise between lab startup speed and host side load.

If Netkit is instructed to simultaneously start multiple virtual machines, some of the services may not
start up properly. This is usually the case when a virtual machine attempts to initialize a service that
depends on another one hosted on a virtual machine that has not been started yet (for example, some
mail service relying on DNS). For this reason, the startup order of virtual machines can be influenced
in two ways. One possibility is to explicitly tell Netkit the startup order. This can be done by either
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hostname ospfd

password zebra

!

router ospf

network 30.0.0.0/30 area 0

redistribute connected

Figure 26: A sample ospfd.conf file.

pc2: router pc1

pc3: router pc1

pc4: pc2 pc3

Figure 27: A sample lab.dep file specifying dependencies on the startup order of virtual machines.

#!/bin/sh

# Connectivity tests

ping -c 3 -i 0.3 195.11.14.1 | head -n -3 | sed ’s/time=.*//’

sleep 5

# Inspect the arp cache (should be populated)

arp | sort

sleep 5

halt

Figure 28: A sample script for performing tests when a lab is launched in test mode.

explicitly listing virtual machines on the command line of lstart or by placing an assignment like the
following one inside lab.conf:

machines="first_vm second_vm third_vm fourth_vm fifth_vm"

A more flexible way to influence the startup order is to just specify dependencies between virtual
machines. This can be done by means of a file lab.dep whose syntax is exactly the same used in
Makefiles. For example, in Figure 27 line

pc2: router pc1

means that router and pc1 have no dependencies on each other and can therefore be started simulta-
neously (provided that the maximum number of booting machines is not exceeded). However, pc2 can
only be started after both router and pc1 have completed their boot phase. Observe that, according to
Figure 27, also pc2 and pc3 can start up at the same time after router and pc1. Instead, pc4 cannot
be started until all the other machines are running.

In the example of lab presented in these Sections we do not make use of the lab.dep file.

4.6 Testing the Lab

Netkit labs are conceived to facilitate distribution and execution on any other platform equipped with a
release of Netkit. If things are configured properly, network experiences should run in the same way and
exhibit the same evolution on any platform. However, there may still be particular settings that affect
the behaviour of poorly configured labs or cause malfunctions of the emulation environment. For this
reason, a lab can be equipped with a special set of scripts that instruct virtual machines to perform a
certain number of tests. Once the lab has been found to behave properly, the results of these tests can be
collected and constitute a signature of a correctly running lab. When moving it to a different platform,
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Figure 29: Startup of the Netkit lab described in Section 4

Figure 30: Shutdown of a Netkit lab by using lcrash.
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router1 console
router1:~# telnet localhost ospfd

Trying 127.0.0.1...

Connected to router1.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

ospfd> show ip ospf database

OSPF Router with ID (30.0.0.1)

Router Link States (Area 0.0.0.0)

Link ID ADV Router Age Seq# CkSum Link count

30.0.0.1 30.0.0.1 1193 0x80000004 0x0abd 1

30.0.0.2 30.0.0.2 1194 0x80000003 0x0abb 1

Net Link States (Area 0.0.0.0)

Link ID ADV Router Age Seq# CkSum

30.0.0.2 30.0.0.2 1199 0x80000001 0xfce0

AS External Link States

Link ID ADV Router Age Seq# CkSum Route

10.0.0.0 30.0.0.1 1198 0x80000002 0x1282 E2 10.0.0.0/8 [0x0]

20.0.0.0 30.0.0.2 1198 0x80000002 0x89ff E2 20.0.0.0/8 [0x0]

Figure 31: A telnet session with ospfd showing the information collected by OSPF.

the lab can again be self tested and the results be compared against the signature. If they match, the
lab is running properly.

The scripts for self testing must be placed inside the directory _test. Netkit understands that this
is a special directory and does not start a virtual machine for it. The script vm.test inside _test is
automatically executed by virtual machine vm when the lab is in launched in test mode (see Section 3.4).
The output of this script is stored in results/vm.user inside the _test directory. In addition, Netkit
also performs some default tests including the status of network interfaces, the contents of the kernel
forwarding table, a summary of the ports in listening status, and a listing of running processes. The
results of these default tests are stored inside results/vm.default inside directory _test.

Figure 28 shows a possible example of script for self testing. It reports the success of a connectivity
test and the contents of the ARP cache. Observe that information that is subject to unpredictable
changes (round-trip time for the ping, ordering of the entries in the ARP cache) is filtered out, so that
the results of tests performed on different platforms can be immediately compared.

5 Managing a Virtual Lab

Once a Netkit virtual lab has been set up, it can be easily managed by means of the ltools. The
lab can be simply started by issuing lstart on the host, as demonstrated in Figure 29. The Figure also
shows that, thanks to OSPF, each router can also ping the LAN it is not directly connected to. Other
investigations can be performed on the running lab by simply interacting with one of the virtual machine
terminal windows. For example, Figure 31 shows the contents of the OSPF database.

Stopping a running lab is as simple as issuing lcrash or lhalt (slower) on the host (see Figure 30).
Optionally, lclean can be used to get rid of temporary files (COW files, logs) left over after running the
lab.

Netkit labs can be easily moved to another workstation by simply wrapping them into an archive,
typically a tar.gz. Notice that, as there is no need to carry potentially large filesystem images, a lab
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Figure 32: The topology of the lab for studying multihomed stub networks.

can be packed into a very small file and can therefore be also transferred very quickly over the web or by
e-mail. Taking advantage of this, lots of ready to use lab experiences are made available on the Netkit
web site [12].

Thanks to the architecture described in Section 3, Netkit makes it simple to build even large network
scenarios consisting of several virtual devices. In theory there is no limit to the number of virtual machines
that can compose a lab. In practice, experiments have shown that it is possible to run experiences
consisting of more than 100 virtual machines on a typical workstation (see Section 3.1).

6 A Case Study: Multihoming

This Section provides an example of usage of Netkit to study issues that may arise in the interaction
between routing protocols. We take as reference one of the labs made available on the Netkit web site [12],
which considers a multihomed stub network as case study for pointing out these issues.

Figure 32 shows the topology of the lab we are considering. It consists of three Autonomous Systems:
AS100 and AS200 are customers, while AS20 is their provider. AS100 is a multihomed stub, meaning
that it has multiple connections to its ISP but does not provide transit service to its neighbours. Instead,
AS200 is single homed. As a provider, AS20 supplies transit service to its customers. The Autonomous
Systems in this topology exchange routing information with each other by using BGP. In particular,
AS100 exploits its multiple connections to the provider AS20 to enforce a backup policy: the link on
collision domain F is never used unless link E fails. Keeping a link completely unused is of course an
unrealistic situation. However, it is a reasonable assumption for the purpose of showing an example of
the effect of routing policies on the choice of routing paths. The two routers inside AS20 establish an
iBGP peering to exchange external routes they have learned via BGP.
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Host console
max@foo:~/netkit-lab_bgp-6-multi-homed-stub$ tree -n

.

|-- CHANGES

|-- as100r1

| \-- etc

| \-- zebra

| |-- bgpd.conf

| \-- daemons

|-- as100r1.startup

|-- as200r1

| \-- etc

| \-- zebra

| |-- bgpd.conf

| \-- daemons

|-- as200r1.startup

|-- as20r1

| \-- etc

| \-- zebra

| |-- bgpd.conf

| \-- daemons

|-- as20r1.startup

|-- as20r2

| \-- etc

| \-- zebra

| |-- bgpd.conf

| \-- daemons

|-- as20r2.startup

\-- lab.conf

Figure 33: Directory structure for the multihoming lab.

as20r1[0]="A"

as20r1[1]="F"

as20r1[2]="C"

as20r2[0]="E"

as20r2[1]="C"

as200r1[0]="A"

as200r1[1]="B"

as100r1[0]="E"

as100r1[1]="F"

as100r1[2]="J"

Figure 34: lab.conf file describing the topology in Figure 32

Figure 33 shows the hierarchy of files and directories that make up the lab. Apart from the file
CHANGES, which is only a log of the fixes and changes made to the lab, it can be easily seen from the
configuration files that routers in this lab run the BGP routing protocol. The topology of Figure 32 is
implemented inside the file lab.conf as shown in Figure 34.

It is interesting to investigate in the BGP configuration of the customer as100r1. Figure 35 shows how
to obtain this configuration through the command line interface of bgpd instead of the file bgpd.conf.
The backup policy is enforced by the customer AS100 by using local-preference and metric. In particular,
the route-map localPrefIn lowers to 90 the local-preference on announcements coming from neighbour
as20r1 (link F, used as backup); for the announcements received from link E the default value of 100 is
fine. The other route-map, metricOut, is used to increase to 10 the metric on outgoing announcements
made by as100r1 to its neighbour as20r1; as for outgoing announcements directed to as20r2, the default
metric value of 0 is retained. In this way, both the outgoing and the incoming traffic are discouraged from
taking a path through link F. The other prefix-lists prevent transit traffic from traversing the customer
as100r1 by discarding announcements of extraneous prefixes.

By looking at the BGP routing table of as100r1 (Figure 36), it can be easily seen that the chosen
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as100r1 console
as100r1:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as100r1.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> enable

Password: zebra

bgpd# show running-config

Current configuration:

!

hostname bgpd

password zebra

enable password zebra

log file /var/log/zebra/bgpd.log

!

debug bgp

debug bgp events

debug bgp keepalives

debug bgp updates

debug bgp fsm

debug bgp filters

!

router bgp 100

network 100.1.0.0/16

neighbor 11.0.0.2 remote-as 20

neighbor 11.0.0.2 description Router as20r2 (primary)

neighbor 11.0.0.2 prefix-list defaultIn in

neighbor 11.0.0.2 prefix-list mineOutOnly out

neighbor 11.0.0.6 remote-as 20

neighbor 11.0.0.6 description Router as20r1 (backup)

neighbor 11.0.0.6 prefix-list defaultIn in

neighbor 11.0.0.6 prefix-list mineOutOnly out

neighbor 11.0.0.6 route-map localPrefIn in

neighbor 11.0.0.6 route-map metricOut out

!

access-list myAggregate permit 100.1.0.0/16

!

ip prefix-list defaultIn seq 5 permit 0.0.0.0/0

ip prefix-list mineOutOnly seq 5 permit 100.1.0.0/16

!

route-map metricOut permit 10

match ip address myAggregate

set metric 10

!

route-map localPrefIn permit 10

set local-preference 90

!

line vty

!

end

Figure 35: Configuration of BGP on router as100r1.
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as100r1 console
as100r1:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as100r1.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> show ip bgp

BGP table version is 0, local router ID is 100.1.0.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*> 0.0.0.0 11.0.0.2 0 20 i

* 11.0.0.6 90 0 20 i

*> 100.1.0.0/16 0.0.0.0 0 32768 i

Total number of prefixes 2

Figure 36: The BGP routing table of as100r1.
as100r1 console

as100r1:~# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

11.0.0.4 * 255.255.255.252 U 0 0 0 eth1

11.0.0.0 * 255.255.255.252 U 0 0 0 eth0

100.1.0.0 * 255.255.0.0 U 0 0 0 eth2

default 11.0.0.2 0.0.0.0 UG 0 0 0 eth0

Figure 37: Kernel forwarding table of as100r1.

backup policy is actually being enforced. In fact, due to the higher value of the local-preference, the
instance of BGP running on as100r1 has chosen the path through neighbour 11.0.0.2 (as20r2) as
best alternative to reach the default route announced by the provider. The “greater than” symbol (>)
indicates the currently selected route. This information is further confirmed by the entry injected in the
kernel forwarding table (see Figure 37).

Figures 38 and 41 show the status (show ip bgp summary) and routing table (show ip bgp) of BGP
on as20r2 and as20r1, respectively. The status confirms that the iBGP peering between 20.1.1.1 and
20.1.1.2 is active. However, while as20r2 chooses 11.0.0.1 (link E, used as primary) as best alternative
to reach as100r1, the same does not happen on as20r1 despite the fact that the entry with next hop
11.0.0.1 is present in the routing table of BGP, has lower metric and higher local-preference. Even more
strangely, Figure 38 shows that the only available alternative on as20r2 to reach prefix 200.2.0.0/16
has not been selected as best, and has therefore not been injected in the kernel forwarding table. As
a consequence, a ping from as20r2 to 200.2.0.1 unavoidably fails (see Figure 39). To complete the
picture of oddities, Figure 40 shows that a traceroute from as200r1 to 100.1.0.1 reveals that the
backup link F is being used for traffic directed to as100r1, which is undesired.

Obviously, something is going wrong with routing, even if the deployed configuration is correct. The
point here is that BGP only considers an entry of the routing table as usable if the path to reach its next
hop has been learned by some IGP or is statically configured. In our case neither of the conditions occurs,
as as20r2 learns how to reach 11.0.0.33 only via iBGP and as20r1 learns how to reach 11.0.0.1 again
only via iBGP. The origin of learned routes can be checked by querying the Zebra daemon. For example,
Figure 42 shows that the route to 11.0.0.33 has been learned by BGP.

There are two possible fixes to this situation. The first one is to enable some IGP inside AS20, so
that information about directly connected networks is propagated inside the AS and can be used by BGP
to reach all the next hops. The second one, which we apply here, is to configure two static entries in
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as20r2 console
as20r2:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as20r2.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> show ip bgp summary

BGP router identifier 20.1.1.2, local AS number 20

3 BGP AS-PATH entries

0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

11.0.0.1 4 100 116 117 0 0 0 01:53:34 1

20.1.1.1 4 20 118 118 0 0 0 01:53:39 6

Total number of neighbors 2

bgpd> show ip bgp

BGP table version is 0, local router ID is 20.1.1.2

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

* i0.0.0.0 20.1.1.1 0 100 0 i

*> 0.0.0.0 0 32768 i

*> 11.0.0.0/30 0.0.0.0 0 32768 i

*>i11.0.0.4/30 20.1.1.1 0 100 0 i

*>i11.0.0.32/30 20.1.1.1 0 100 0 i

* i20.1.1.0/24 20.1.1.1 0 100 0 i

*> 0.0.0.0 0 32768 i

*> 100.1.0.0/16 11.0.0.1 0 0 100 i

* i 11.0.0.5 10 100 0 100 i

* i200.2.0.0/16 11.0.0.33 0 100 0 200 i

Total number of prefixes 7

Figure 38: Peering status and BGP routing table of as20r2.

as20r2 console
as20r2:~# ping 200.2.0.1

connect: Network is unreachable

Figure 39: A failed ping from as20r2.

as200r1 console
as200r1:~# traceroute 100.1.0.1

traceroute to 100.1.0.1 (100.1.0.1), 64 hops max, 40 byte packets

1 11.0.0.34 (11.0.0.34) 1 ms 2 ms 1 ms

2 100.1.0.1 (100.1.0.1) 2 ms 2 ms 2 ms

Figure 40: Traffic from as200r1 to 100.1.0.1 takes the path through the backup link F, which is
undesired.
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as20r1 console
as20r1:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as20r1.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> show ip bgp summary

BGP router identifier 20.1.1.1, local AS number 20

3 BGP AS-PATH entries

0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

11.0.0.5 4 100 118 121 0 0 0 01:56:49 1

11.0.0.33 4 200 118 120 0 0 0 01:56:50 1

20.1.1.2 4 20 119 122 0 0 0 01:56:41 4

Total number of neighbors 3

bgpd> show ip bgp

BGP table version is 0, local router ID is 20.1.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

* i0.0.0.0 20.1.1.2 0 100 0 i

*> 0.0.0.0 0 32768 i

*>i11.0.0.0/30 20.1.1.2 0 100 0 i

*> 11.0.0.4/30 0.0.0.0 0 32768 i

*> 11.0.0.32/30 0.0.0.0 0 32768 i

* i20.1.1.0/24 20.1.1.2 0 100 0 i

*> 0.0.0.0 0 32768 i

* i100.1.0.0/16 11.0.0.1 0 100 0 100 i

*> 11.0.0.5 10 0 100 i

*> 200.2.0.0/16 11.0.0.33 0 0 200 i

Total number of prefixes 7

Figure 41: Peering status and BGP routing table of as20r1.

as20r2 console

as20r2:~# telnet localhost zebra
Trying 127.0.0.1...
Connected to as20r2.
Escape character is ’^]’.

Hello, this is zebra (version 0.94).
Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra
Router> show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

B - BGP, > - selected route, * - FIB route

C>* 11.0.0.0/30 is directly connected, eth0
B>* 11.0.0.4/30 [200/0] via 20.1.1.1, eth1, 03:19:58

B>* 11.0.0.32/30 [200/0] via 20.1.1.1, eth1, 03:19:58

C>* 20.1.1.0/24 is directly connected, eth1
B>* 100.1.0.0/16 [20/0] via 11.0.0.1, eth0, 03:19:53
C>* 127.0.0.0/8 is directly connected, lo

Figure 42: The protocol by which routes in the forwarding table have been learned can be checked by
querying the zebra routing daemon.
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as20r2 console
as20r2:~# route add -net 11.0.0.32/30 gw 20.1.1.1 dev eth1

Figure 43: Configuration of a static entry to reach 11.0.0.33 in the forwarding table of as20r2.
as20r1 console

as20r1:~# route add -net 11.0.0.0/30 gw 20.1.1.2 dev eth2

Figure 44: Configuration of a static entry to reach 11.0.0.1 in the forwarding table of as20r1.
as20r2 console

as20r2:~# telnet localhost zebra
Trying 127.0.0.1...
Connected to as20r2.
Escape character is ’^]’.

Hello, this is zebra (version 0.94).
Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra
Router> show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

B - BGP, > - selected route, * - FIB route

C>* 11.0.0.0/30 is directly connected, eth0
B>* 11.0.0.4/30 [200/0] via 20.1.1.1, eth1, 00:00:43

K>* 11.0.0.32/30 via 20.1.1.1, eth1

B 11.0.0.32/30 [200/0] via 20.1.1.1, eth1, 00:00:43
C>* 20.1.1.0/24 is directly connected, eth1
B>* 100.1.0.0/16 [20/0] via 11.0.0.1, eth0, 00:00:41
C>* 127.0.0.0/8 is directly connected, lo

Figure 45: Statically configured routes are marked as kernel by Zebra and are preferred over those
learned via other routing protocols.

the forwarding tables of as20r2 and as20r1 telling them how to reach the next hops 11.0.0.33 and
11.0.0.1, respectively. The commands for doing this are shown in Figures 43 and 44. The statically
configured routes are marked by Zebra as being learned from the kernel (see Figure 45) and are preferred
over routes learned via other routing protocols.

After the fix has been applied, everything starts to work as desired. Figures 46 and 47 show that
traceroutes actually use the primary link E.

Now that everything is working as expected, we can check that the backup policy is operational: we
intentionally break link E and check that the traffic shifts to link F. Provided that we are inside an
emulation environment, a link can be broken in at least two ways. One is to simply bring down one of the
network interfaces attached to that link, by using the following command on either as20r2 or as100r1:

ifconfig eth0 down

The other one is to administratively shutdown the BGP peering between as20r2 and as100r1. We
choose the latter alternative, which can be carried into effect by issuing the commands shown in Figure 48.
Notice that, since a BGP peering must be explicitly configured by both participants, shutting it down on
just one side is enough to divert routing.

After waiting some time for the routing updates to propagate, we fall into the expected state in which
all the traffic uses the backup link F (see Figure 49).

We do not show, but it is easy to imagine, that restoring the peering also results in traffic shifting
back to the primary link E.

7 Conclusions

We provide a survey of environments for the emulation of computer networks. We describe in detail
Netkit, a lightweight network emulator based on User-Mode Linux. We show how Netkit can be effectively
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as100r1 console
as100r1:~# traceroute 200.2.0.1

traceroute to 200.2.0.1 (200.2.0.1), 64 hops max, 40 byte packets

1 11.0.0.2 (11.0.0.2) 1 ms 1 ms 1 ms

2 20.1.1.1 (20.1.1.1) 1 ms 2 ms 1 ms

3 200.2.0.1 (200.2.0.1) 3 ms 2 ms 2 ms

Figure 46: After fixing the forwarding tables of routers in AS20, a traceroute from as100r1 to 200.2.0.1
correctly uses as100r1’s primary upstream link E.

as200r1 console
as200r1:~# traceroute -n 100.1.0.1

traceroute to 100.1.0.1 (100.1.0.1), 64 hops max, 40 byte packets

1 11.0.0.34 1 ms 1 ms 1 ms

2 20.1.1.2 1 ms 1 ms 1 ms

3 100.1.0.1 2 ms 2 ms 2 ms

Figure 47: After fixing the forwarding tables of routers in AS20, a traceroute from as200r1 to 100.1.0.1
correctly uses as100r1’s primary upstream link E.

as20r2 console
as20r2:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as20r2.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> enable

Password: zebra

bgpd# configure terminal

bgpd(config)# router bgp 20

bgpd(config-router)# neighbor 11.0.0.1 shutdown

bgpd(config-router)# end

bgpd# show ip bgp summary

BGP router identifier 20.1.1.2, local AS number 20

3 BGP AS-PATH entries

0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

11.0.0.1 4 100 220 222 0 0 0 00:00:05 Idle (Admin)

20.1.1.1 4 20 226 223 0 0 0 03:37:37 6

Total number of neighbors 2

Figure 48: A telnet session showing the commands to administratively shutdown a BGP peering.

as100r1 console
as100r1:~# traceroute 200.2.0.1

traceroute to 200.2.0.1 (200.2.0.1), 64 hops max, 40 byte packets

1 11.0.0.6 (11.0.0.6) 1 ms 1 ms 1 ms

2 200.2.0.1 (200.2.0.1) 1 ms 2 ms 1 ms

as200r1 console
as200r1:~# traceroute -n 100.1.0.1

traceroute to 100.1.0.1 (100.1.0.1), 64 hops max, 40 byte packets

1 11.0.0.34 2 ms 1 ms 1 ms

2 100.1.0.1 1 ms 1 ms 1 ms

Figure 49: After administratively shutting down the peering between as20r2 and as100r1, traffic goes
through the backup link F.

36



exploited to ease experimenting with complex scenarios consisting of several virtual devices. We also
explain how these scenarios can be easily packed and redistributed for sharing them with others. Last,
we show a sample application of Netkit to the study of a multihoming configuration, pointing out issues
related to the interplay between BGP and IGP protocols. Among the other network emulators, Netkit
has the advantages of being lightweight and to support installation and execution fully in user space.
It also facilitates the exchange and redistribution of emulated scenarios and supports reasonably good
scalability by allowing to run more than one hundred of virtual devices on a typical workstation. Moreover,
Netkit provides users with a familiar environment consisting of a standard Linux distribution and routing
daemons using a Cisco-like command syntax.

One of the most natural contexts of application of Netkit is probably didactics: it can be effectively
exploited in teaching networking by giving the students the opportunity to experiment with the protocols
and services they are learning. However, we believe that Netkit may prove itself useful for both operators
and researchers in several other contexts, ranging from testing of configurations before deployment to
debugging and development of new services and protocols, from studying abnormal routing behaviours
to validating theoretical model by experimentation.

8 Team and History

Netkit is the result of the joint work of several people over time. Giuseppe Di Battista and Maurizio
Pizzonia conceived the first idea of Netkit in 1999. At that time, Andrea Cecchetti suggested to use User-
Mode Linux. Maurizio Pizzonia implemented the first releases of the vtools. A significant improvement
has then been introduced by Stefano Pettini who devised the idea of the ltools to support complex
scenarios and wrote the first version. Most of the ready to use labs available on the Netkit site have been
devised and implemented by Giuseppe Di Battista and Maurizio Patrignani, who currently use them
within their courses (basic and advanced) at the Roma Tre University, where hundreds of students every
year use Netkit to learn networking. Netkit has also been successfully used in several other contexts and
different people have contributed to it. In particular, Sandro Doro is maintaining a live CD version of
Netkit and is using it within his networking courses. Federico Mariani helped us in emulating the GARR
network. Lorenzo Colitti performed extensive experimentations with IPv6 inside Netkit. Fabio Ricci
implemented the self testing system for Netkit labs.

We would also like to thank the community of Netkit users for the useful hints and discussions in the
Netkit mailing list, as well as all the people who put their effort in improving and making Netkit what it
currently is and who are not explicitly mentioned here.
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